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ABSTRACT

“T:}This paper presents a hierarchical approach to plan and schedule
production in a manufacturing environment that can be modeled as a two
stage process. A conceptual framework for this approach is described.
The specific mathematical models proposed for the various hierarchical
levels are discusse&. The methodology is evaluated in an actual set-
ting. The performance of the hierarchical system is contrasted with

an MRP design. Encouraging results are reported. ) S
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1. INTRODUCTION

The management of the production process involves complex choices
among a large number of alternatives. These choices have to be made by
trading off conflicting objectives in the presence of financial, techno-
logical, and marketing constraints. Since its early developments, operations
research found the field of production planning a most fruitful area of
application.

Initial operations research contributions to production planning tended
to address individual sub-problems. More recently, attention has been
focused on the design of integrative model-~based approaches to support the
overall spectrum of production management decisions. Hierarchical planning
systems represent one methodology suggested to deal with the entirety of
production management issues. In a recent publication [1] the authors have
addressed the characteristics of those systems for single-stage production
processes. The logic of single-stage hierarchical planning systems will
not be presented here. For an extensive coverage of these subjects, the
reader is referred to [2],[6],[7].

The objective of this paper is to discuss extensions of hierarchical
production planning (HPP) systems to support two-stage production processes.
This is an important area of concern since many manufacturing environments
can be described in terms of two-stage processes. The most relevant of
such environments are those involving fabrication and assembly operationms,
where activities have to be planned in a coordinated way. Figure 1.1
{llustrates a simplified representation of a two-stage setting. A concept-
ual overview of a two-stage HPP system is given in Figure 1.2. The essence
of the approach can be summarized as follows:

- First, individual parts and finished products are grouped into

aggregate parts and aggregate finished products.
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- Second, an aggregate model is used to schedule the correspunding
production quantities for those aggregate parts and finished products. The
model addresses this decision jointly, thus guaranteeing :he appropriate
coordination of the two-stage process. '

- Third, the aggregate part production and finished product production
plans are disaggregated to determine the detailed schedules for individual
parts and finished products.

- Fourth, a reconciliation of possible differences at the detail
level is perfofmed via part inventories.

We favor an aggregate allocation approach at the higher level of the
hierarchical system to avoid the massive data manipulation, computational
complexities, and forecasting inaccuracies that would be imposed by a
detailed allocation model at that level. Furthermore, we do not believe
that a‘detailed formulation is necessary to capture the essential trade-
offs and constraints inherent in the production planning process at a
tactical level. Finally, the HPP approach allows for effective managerial
interaction at all levels of the decision making process, as explained in
[1].

The overall hierarchical design can be viewed as an alternative to
Material Requirements Planning (MRP), the most widely used design philos-
ophy to deal with two-stage production planning issues (see [10],[12],{13]).
However, some elements of the hierarchical ffamework can also be construct-
ively used to enhance an MRP system.

In sections 2 and 3 we describe the characteristics of the proposed
HPP system. A brief description of MRP and computational results contrast-
ing HPP with MRP are prsented in section 4. Conclusions are given in

section 5.

G — - : —-
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2. TWO-STAGE HIERARCHICAL PLANNING (HPP) - THE AGGREGATE PLANNING MODEL

The highest level of planning in the hierarchical approach determines
production schedules for aggregate parts and aggregate finished products
(see Figure 1.2). Thus, the first design decision to be made concerns the
way in which individual parts and finished products are to be aggregated.

The criterion for the aggregation of finished products follows quite
closely the one adopted for the single-stage hierarchical planning system
[1]. The aggregation used for finished products in the two-stage setting
is as follows:

Product Items: are end finished products delivered to customers.

Product Types: are groups of finished product items having similar direct
production costs (excluding labor), holding cost per unit per
period, productivities (number of units that can be produced per
unit of time), and seasonalities.

Product Families: are groups of finished product items sharing a major

setup cost and requiring an identical number of the same parts.
The aggregation criterion for parts recognizes only one level of
aggregation:

Part Items: are individual parts either required as a component to a
product item or having an independent demand as a service or
spare part.

Part ngesf are groups of part items having similar direct production
costs, holding costs per part per period, and productivities.
Part items also share common fabrication facilities. For parts,
two levels of aggregation was sufficient as no two items shared
a setup cost,

This aggregation of finished products and parts is applicable

to many industrial settings encountered in practice and was inspired by a
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real-life situation that will be discussed in section 4, This framework
can be adjusted to fit several variants of the proposed aggregation structure
and should not be seen as a limitation of the hierarchical methodology to

be presented.

2.1 Aggregate Production Planning for Product Types and Part Types

The aggregate two-stage allocation model introduced here is formulated
a8s a linear program. We have chosen this representation because in the vast
majority of practical instances, production allocation decisions lend them-
selves quite naturally to be treated by linear programming. However, any
of the aggregate production models suggested in the literature ([5 ] and
[8]) could have been used as long as they provide an acceptable formulation

of the process being considered.

The Aggregate Two-Stage Linear Programming Model

Problem (P)

T I
minimize E [.z (hitlit +r Rt °t°1z) +
t=1 "i=}
K A A A ~ ~ A ]
+
oy PeeTree * Freeee * Ol
+ + =
subject to Iit-l mi(Rit Oit) + Iit d1t
i=1,2,...,1; t=1,2,...,T (2.1)
1
£ R, < (mm) t=1,2,...,T
(=] 1t t
I
P < (om) t=1,2,...,T
4=1 1t t
< - eee,I; t= eresy
as1t < Iit hS os1t i=1,2, , I t=1,2, T
K ~ ~
k£1 Rkt < (rm)t t=1,2,...,T

4 T 2 0 I s nanatii (et ;
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S 6 om) t=1,2 T
L o 2 (om, =lylyeees
oy kt

A~

sskt S ikt S oASkt k=1,2,...,K; t=1,2,...T

Lee-1 Y (R okt) "I T

I
X fikmi(Rit+L + Oit+L) k=1,2,...,K; t=1,2,...,T-L
i=1

(2.2)

~ A ~ >
Rier O5er Ty Ryer Oer 84 L 20

i=1,...,I; k=1,2,...,

K;

The indices 1, k, and t represent, respectively, product types, part types,

and timeperiods. The parameters h, , r., o, m, dypo (rm)t, (Om)t, SS, s

and os denote, respectively, the cost of holding one unit of inventory of

it

product type i from period t to period t+l, the cost of one hour of regular

labor in period t, the cost of one hour of overtime in period t, the
productivity of product type i, the effective demand of units of product
type 1 in period t, the number of regular labor hours in period t, the
number of overtime hours in period t, the safety stock of product type i
in period t, and the overstock limit of product type 1 in period t. The
éatameters with a "™" have the same meaning for part types.

The number of units of part type k required per unit of product type

is represented by f This parameter is discussed later in this section.

ik*

The variables Rit' 0i

labor time, the number of hours of overtime, and the number of units in

e? and Iit denote the number of hours of regular

inventory for product type i in period t. The variables with a """ have
the same meaning for part type k in period t. The fabrication lead time

of parts is denoted by L. The labor unit cost for part types has been

i
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assumed to be a function of each part type, while the labor unit cost
for assembly, r and o, are taken equal for all product types. These
assumptions do not cause a loss of generality in the results discussed
in the paper.

Effective demands for product types are computed by netting out
the available inventory of each item belonging to the product type.
Therefore, in our model formulation, Iio = 0 for i=1,2,...,I. For the
computation of effective demand the reader is referred to [1].

Problem (P) is solved with a rolling horizon of length T. At the

end of each time period, new inforuation becomes available and is used to

update the model. Only the results pertaining to the first L+l periods

for product types, and the first period for part types are implemented.

Constraints (2.2) couple part type requirements and product type product-

ion. The other set of constraints involve either part types or product

types, but not both. The first L constraints in (2.1) are included in order
} to take into consideration the revised forecasts made at the beginning of
each period. Although the corresponding parts are already being manufac-
tured, or have already been ordered, minor variations can be absorbed by
either expediting the part production or by having a supplier make a
special delivery.

To simplify the formulation of Problem (P), we have intentionally
omitted planned backorders, hiring and firing, lost sales, and subcontract-
ing. If needed, these can easily be incorporated.

A critical point in the two-stage model is the definition of the
parameters fik' Theorem 2.1 below shows how those parameters are computed.
It also demonstrates that, under certain hypotheses, the definftion adopted

implies the existence of a feasible disaggregation scheme.

Let j denote a generic product family of product type i, let n be a

s ath

.
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generic part in part type k, and define fik as a weighted average of the

fijkn as:

T T d.f,,
j ijkn
3
K 3e3(1) neN(io) 1=1,2,...,1; k=1,2,...,K

X d.
jeaciy (2.3)

where J(i) is the set of indices of the product families in product type 1,
N(k) is the set of indices of parts in part type k, aj is the annual demand

of family j, and fi is the number of units of part n required by each

jkn

unit of product family j. Note that fi n i1s well defined since, by defi-~

jk
nition, the famflies in a product type require the same number of units
of the same parts.

It is important to realize that the parameter fik represents a weighted
average of the parts required by individual items. Thus the solution of
the aggregate Problem (P), does not assure the existence of feasible

disaggregation even with perfect forecasts. Fortunately, under mild

conditions feasibiligy can be achieved as is shown in the followine thnorem.

Theorem 2.1: Assume that a perfect forecast is available, the initial

inventory of every product family is equal to zero, and that Problem (P)
is solved just once (i.e., it is not solved on a rolling horizon basis).
The first L constraints in (2.1) are deleted. Then, the initial inventory
of part type k plus the production scheduled by Problem (P) for this

part type up to period T is sufficient to satisfy the sum of the demands,
corresponding to the interval [1,7], of all parts in part type k for every

T, such that, 1 < v £ T~L.

Proof: Denote mi(R ) by X The production of part type k

it+L + 01:+L iy’
from periods 1 to T plus its initial inventory, for a generic T in the

interval [1,T-L] is:

—— S R it

»
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R T 1
= I + ¢ I f_X
kT 0y qm) ik it+L

I, +
xt ¥ By
T T
where Ek = I
t=1 i=1

I 1 _

T L x T £, 4 = B
i=1 t=1 jeJ(i) neN(k) Iikn JtiL k
where djt

4L denotes the demand of product family j in period t+L.

that, by assumption, the initial inventories of each finished product
family is zero.

We first show that Ek 2 Bk. Since all items ina given product type
have the same seasonality it follows that the ratio of cumulative family
demands within a product type remains constant:
T -~
ooy G

- .
T L d T
JeJ (i) t=1 it

(2.6)
jedw) 7
Hence, from (2.3) and (2.6),

T

L z I £, 4d
f - JeJ{) neN(k) t=1 ijkn jt+L
ik

T
T r d
jeJ() t=1 I
and

T T
I I f.d = I r I £ d ,
ges(r) e=1 RIFL o yeg(h) nen() a1 MR I
or, equivalently, since d

= I d we have
icHL JeI (1) Je+L

X fikxit+L’ and the first equality follows from (2.2).

(2.4)

The sum of the demands of all parts, corresponding to the interval [1,T], in
part type k is:

(2.5)

Recall

i
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I 1 _ I T _
I I f,d pX z z I f£,...d . Q2.7
1=1 t=1 AL ) 5e() neN(k) =1 Skn It
The aggregate Problem (P) implies that
T T _
I X > I d . (2.8)
pop AtHL = 2 CdedL
Therefore, by substituting (2.8) in (. 7) we obtain
E,L, 2 B . (2.9)

k k

Since ikT 2 0, it follows by (2.4), (2.5), and (2.9) that

I T
z p) z r f
i=1 jeJ(i) neN(k) t=1

Itv

~ T ~ ~ A -

Lo * :21 B Ree + O 15kndyee’
Despite the fact that Theorem 2.1 establishes feasibility conditions

for the case of no forecast error and a stationary horizon, our computational

experience indicates that good results are obtained even in the absence

of these conditions. There are two reasons to support this fact. First,

in our computational work, we have observed that the rolling production

schedules obtained are quite stable. Second, it can be shown that if

the initial inventories are nonzero, but the product families' initial

inventories are well balanced, i.e., 1if

1 d
21941 = T 1 — for i=1,2,...,I and jeJ(1)
jo d
10 je3q) (2.10)

then, Theorem 2.1 holds.

We conclude this section by pointing out that the setup costs have
been intentionally ignored in Problem (P). They are considered during the
disaggregation process. This procedure is acceptable whenever setup costs

are not a significant portion of total costs. When this is not the case,

N B a e e AR e N Tl X =
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a procedure similar to the one devised in (1] for adjusting the hier-

archical method for high setup costs can be developed.

vne




3. TWO-STAGE HIERARCHICAL PLANNING SYSTEM — THE DISAGGREGATION PROCEDURE

The disaggregation of the solution of the aggregate Problem (P) is
performed in two steps. Initially, product family requirements over the
first L+1 periods and part requirements for period 1 are determined. 1In
the second step, the production quantities for product items in period 1
are obtained by disaggregating the corresponding production quantities of the
product families to which they belong. Let X and ikt denote, respectively,

it
o Ry +0;,) and m (R +0, ).

Step 1: Product Families and Part Requirements

To determine the production quantities for product families and parts,
the following problem needs to be solved:

Problem (PD)

I+1 I 4 K A
minimize I I pX (s,D, /O, ) + L T (s,D, . /Q )
t=1 i=1 jeJ(i,t) I I8 I¥  yol nenk,1) K ¥ ®l
(3.1)
I A -~
subject to X z f Q < ai - ss (3.2)
1=1 jEJ(4,t) ijkn'jt nt nt
k=1,...,K; neN(k); t=1,...,L
I A ~ A
T I £,..Q < ai - ss +Q
1=1 JeI(1,1+1) ijkn jl4+l = nL+1 nL+1 nl
k=1,...,K; neN(k) (3.3)
Q = X i=1,...,I; t=1...,L+1  (3.4)
jeI,ey it it
I Q. = X k=1,...,K (3.5)
neN(k,1) ™ %1 SR
Ebjt < th < uby, 1=1,...,1; jeJ(i,t); t=1,...,L+1
(3.6)
Ab 2 Q) S ub, kel,....K; neN(k,1) - (3.7)
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The setup cost of product family j is denoted by sj. The demand of
family j over the run-out time of the product type to which it belongs is

represented by D The run-out time is the number of time periods in which

it’

the available inventory plus the production quantity X minus the safety

it
stock of the product type is expected to last. The concept of run-out time

has been discussed in [1] and [6]. The lower and upper bounds ijt and

ub are defined as follows:

jt

ijt

max (0, djt - aijt - ssjt) (3.8)

ub, = max (0, os

St - aijt) (3.9

jt

where d, , ai, , and ss are, respectively, the demand, the available

jt jt jt
inventory, and the safety stock in period t. The variable th denotes
the production quantity of family j in period t. The parameters and
variaﬁles with a """ have the same meaning for parts instead of
product families. éint includes the number of units of part n on order
or being fabricated that will become available in period t. J(i,t) and
N(k,t) are, respectively, the set of indices of families in product type i
and the set of indices of parts in part type k that have a strictly
positive lower bound in period t. These are the families and parts that
are triggered in period t.

The objective function (3.1) assumes that the family run quantities
are proportional to the setup costs and to the annual demand for a given
family. This assumption, which is the basis of the economic order quantity
formulation, tends to minimize the average annual setup cost. Notice that
the demand terms in the objective function, DJt and Bkl cover a planning
horizon equal to the run-out time. This is consistant with the myopic

rules developed in [1}. Constraint (3.2) could have been omitted and the

productions corresponding to the lead time "frozen". However, we have

SRS L o
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chosen not to freeze the production over the horizon L since some corrections
can be accommodated in practice either by expediting production or by having
special deliveries made by suppliers. Problem (PD) has a convex objective
function with linear constraints. It has been solved by the Frank and Wolfe
algorithm [4].

Theorem 3.1 below shows that under certain conditions a disaggregation
problem, intimately related to Problem (PD), can be decomposed into contin~

uous convex knapsack subproblems of the same type as those that arise in

the single-stage hierarchical model developed in [1) and {2]. The advantage
is that the knapsack problems can be solved by an efficient algorithm

reported in [3].

The lower and upper bounds (3.8) and (3.9) for t=2,...,L+1 are a
function of the disaggregation procedures used in periods 1 to L, since
the available inventories are affected by those disaggregations. However,
because the rolling horizon production schedules tend to be quite stable,
it is possible to estimate the lower and upper bounds using the results
obtained from the disaggregation of the last aggregate schedule available.

We denote these estimates by 2be, and ube, and rewrite (3.6) as

jt jt
fhyy < Q) S uby, 1=1,...,1; JeJ(i,1)
(3.6)'
fbe £ Q < ube i=1,...,I; jeJ(i,t); ‘
it e = e t=2,...,L+1

Problem (PD) with (3.6)' instead of (3.6) is denoted by Problem (PDe).

Theorem 3.1: Assume that a perfect forecast is avallable for the first L+l
periods, and that the product families in each product type require the

same number of units of each part, i.e., for i=1,2,...,1:

fiykn = Ykn
jeJ({i), k=1,...,K, and neN(k). Then Problem (PDe) can be decomposed in

[T(1L+1)+k]T continuous convex knapsack problems.

P . - B e e ey i g Nse S e LN iU DG S L]
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Due to the assumption of perfect forecasis, safety stocks can be

deleted and constraints (3.2) and (3.4) become:

I I
T z £..Q, = L q. X < ai
1=1 jeJ(4,t) ijkn jt i=1 ikn it nt
k=1,...,K; neN(k); t=1,...,L
(3.10)
and
I I
z z f.., Q. q,, X, <
1=1 jeJ(i,L+1) ijkn jL+1 i=1 ikn iL+1
a +Q . k=l,...,K;
< 8inL+l in k=1, ,K; neN(k)
(3.11)
where the first equalities in (3.10) and (3.11) follow from (3.4). The

terms in the left-hand sides of the inequalities

known from the aggregate schedule obtained from Problem (P).

~

ajht+l

Hence, all terms in the right-hand-side of (3.10) and 5%1

ent on the method of disaggregation.

be deleted.

Problem (PDe)

in (3.10) and (3.11) are

Moreover,

q t=1,2,...,L

1 iknxit

LU e

i

L+1 2re not depend-

Consequently, constraints (3.10) can

Therefore, Problem (PDe) can be rewritten as:

L+l I K R
minimize I I b (s,D, /Q, )+ L T (s,D, ./Q )
t=1 1=1 jeJ(i,t) 3 3 IV ko) nen(k,1) K KL Ml
I ~ A
subject to 151 qiknxiL+l < alnL+l + in k=1,...,K; neN(k)
z Q,., = X i=1,...,I; t=1,...,L+1
jeI(t,0 3t it ’
g 0. = X k=1,...,K
neN(k,1) ™ Tl
by 20Qpy S owbyy. 1=1,...,1; JeJ(4,1)
L R
b S
i )13»
ey T T — T T T ___, DRI
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fbe. < Q, < ube, i=1,...,1; jeJ(i,t);
S L e YO 51

i\bnl i Anl ; \;bnl =l,---,K; nEN(k,l)

Problem (PDe) can be decomposed in the following [I(L+1)+K] continuous
convex knapsack problems:
Problem {PK(i,1)]

For i=1,2,...,1

minimize T s.D, . /Q.
jes(r,1y 311
subject to z Q. = X
jer(i, 1 It 1
< jed
By < Q) < owby Jed(E,D)
Problem [PK(i,t)]
For i=1,2,...,I and t=2,,..,L+1
minimize hX s.D. /Q.
je(d,r) It 3t
subject to X Q = X
jer(d,r) It it
lbejt < th < Ubejt JeJ(i,t)
Problem [PD(k)]
For k=1,2,...,K
minimize z s, D /Q
neN(k, 1) k7kl’ *n1
subject to z a = X
neNG,y LT N
A I ~ A A
maxtmm (b3 151 ik a4 " g 209y 2wy
neN(k,1) . 5|

ot
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The assumption of perfect forecast during the first L+l periods allows
us to decompose the problem into a set of knapsack problems that can be
solved quite easily. Even if this assumption does not strictly hold, we
can expect that moderate forecast errors can be absorbed by appropriate
levels of safety stocks and the problem can still be decomposed without

severe departures from optimality.

Step 2: Product Item Requirements

The las; production quantities to be determined are the number of units
of each product item to be assembled in the present period. That is, we
need to disaggregate the quantities le obtained from either Problem (PD) or
from Problem [PK(i,1)]. The disaggregation is performed through the following
knapsack problem for each family j in J(i,1), i=1,2,...,1I.

Problem [F(i,1)]

+ P - )
le z ' (a1vl ssvl) : +al - g8 2
minimize X vev(j) < ol dvl vl
vev (J ) VEV(j) vl vl |
subject to Tz = Q
vev(y) V1 i
lbvl i_ le ; “bvl VEV(J)
The parameters dvl’aivl’ssvl' val, and ubvl denote, respectively, the

demand, available inventory, safety stock, lower bound and upper bound of
product item v in time period 1. V(j) is set of indices of the product

items in product family j. The lower and upper bounds Ebv and ubv are

1 1

computed in the same way as in (3.8) and (3.9). The objective function in

Problem [F(j,1)] attempts to equalize the run—out time of each item in family j
and the run-out time of family j. Problem [F(j,1)] is a continuous convex knap-

sack problem with bounded variables. An effective algorithm to solve it has

been provided in [3].
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4. COMPUTATIONAL RESULTS - COMPARING HIERARCHICAL PRODUCTION PLANNING WITH

MATERIAL REQUIREMENTS PLANNING (MRP)

In this section we report the results of extensive computational
experiments conducted to assess the performance of the proposed two-stage
hierarchical planning system. Since MRP is so widely used to deal with
production planning and inventory control in multi-stage settings, we

have contrasted the two approaches.

4,1 The MRP Model Tested

The essential features of MRP are illustrated in Figure 4.1. Although
we will not attempt to present a comprehensive coverage of this subject,
it is important to emphasize the framework of MRP so as to facilitate a
proper comparison between that methodology and the HPP system.

First, MRP defines the production quantities for individual product
items through a planning horizon at least equal to the wmaximum lead time
of the parts needed for the assembly of finished products. This production
plan becomes the master schedule.

It is worth noting that in many MRP systems in use, the master schedule
is viewed as an external input. The lack of an appropriate support for
managers to generate a good master schedule has been cited as one of the
major weaknesses of MRP [12]. Extensive research is being undertaken to
address that weakness todayf

The master scheddle:bf production item quantities is then exploded
to compute requirements for all the part items. When all the requirements
for a given part item have been consolidated, an individual production
schedule is developed for each item.

There are many alternative procedures for calculating the part item

production quantities. Ref. [12] reviews 10 such approaches.
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Figure 4.1: The Essence of MRP Computations
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It is important to realize that at this step no effort has been made
to take into account the ecconomics of point part production; in fact,
total aggregate parts scheduled for production might result in unacceptable
or infeasible work load fluctuations. To correct for these possibilities,
MRP calculates the work load profiles bv major fabrication center. Thosev
profiles are examined by operating managers and, if undesirable patterns
are detected, changes are introduced either at the master schedule level,
or at the part item scheduling level.

When MRP is conceived within the framework just described, it is, in
essence, a simulation tool which allows managers to test some suggested
production programs and identify their consequences.

If we contrast MRP with the proposed HPP system, we can identify
several areas of fundamental differences. HPP determines a joint product
type-part type aggregate schedule. That schedule is both feasible and
attempts to optimize primary costs, Moreover, the fact that it is an
aggregate schedule clearly facilitates genuine understanding of its implica-
tions. The HPP disaggregation process that leads to part item and finished
product item scheduling is focused only on the immediate relevant time
period. This avoids an excessive amount of data and computational work,
because long term consequences have already been accounted for at the
aggregate planning level.

Figure 4.2 depicts the way in which we modeled the MRP system for the
purpose of experimental comparison., Our primary concern was to implement
computational rules for MRP that could provide unbiased grounds for evalua-
tion. The master schedule was determined by disaggregating the solution
of an aggregate linear programming model for product types for the full
pPlanning horizon. The disaggregation procedure used was Equalization-of-

Run-Out Time. As discussed in (1], this disaggregation rule allows for

i T e T )
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an effective and consistent detailed production schedule when the full
planning horizon is ii .olved.

After the individual product item quantities were exploded to deter-
mine part item requirements, the Silver-Meal algorithm was used to deter-
mine part item production schedules. As reported in Peterson and Silver
[11]}, that method performs quite effectively when compared with alternative
lot sizing methodologies.

The last element that we introduced in modeling MRP was the ability
to correct for unattractive or infeasible production schedules. The
consolidated production schedule for part items was examined and adjusted.

For the sake of brevity, we are referring to that system as "the MRP
system”". The reader should recognize that it is not in the spirit of our
work to make definite comments on another methodology. This would have
been an impossible task since MRP can be viewed as a broad approach to
production planning ratﬁer than a specific, well-defined methodology.

In the remaining part of this section we will present the product
structure used in the comparison, and the computational results comparing

HPP with the MRP system outlined above.

4,2 Product and Part Structure

The data used in the experiments were scaled-down from a pencil manu-
facturing company. This firm assembles a variety of pencils requiring a
number of distinct components which are shown in Table 4.1. Individual
pencils are the product items. Identical-sized pencils were grouped into
a single product type, requiring similar assembly times. Within a product
type, items sharing common setup costs and having the same inscriptions
were grouped inté product families. Parts sharing common production faci-

lities were classified into part types. This resulted in three part types:
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Table 4.1: The Finished Product/Part Structure
The Product — Pencils
Variations — Sizes - Product Types
Insignias on the Side - Product Families
Colors - {tems
The Parts — Wood

Lead
Erasers (not all pencils require this)

THE NUMBER OF PARTS REQUIRED PER UNITS OF FINISHED PRODUCT

PART PART
TYPE 1 TYPE 2 __PARTTYPE3
FINISHED PRODUCT/PART WOoOoD ERASER LEAD 1 LEAD 2
PENCIL
Size 1 {Product Type 1)
Insignia 1 (Family 1) Color 1 1 1 1 o
Color 2 1 1 0
Insignia 2 (Family 2) Color 1 1 1 0
Color 2 1 1 0 1
Size 2 (Product Type 2)
Insignia 1 (Family 1} Color 1 1 0
Color 2 1
Insignia 2 (Family 2} Color 1 1 1 1 0
Color 2 1 1 1 0
Insignia 3 {Family 3) Color 1 ] 0 0 1
Color 2 1 0 0
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wood, erasers, and lead (this last part type was composed of two part
items, lead 1 and lead 2).

In order to test the robustness of the HPP and MRP methodologies,
a number of critical parameters were selected to be varied within appro-
priate ranges. The parameters selected were: finished product capacity,
part capacity, gorecast errors, seasonality of demands, finished product
setup costs, part setup costs, part holding costs, seasonality of finished
product demand, and overtime costs. Appendix 1 describes the details of
the values tested for each parameter and their corresponding measurements.

The total combinations of the values of the parameters tested results in

one hundred different runs.

4.3 Computational Results

We compared the performance of MRP and HPP, in terms of costs and
backorders. When total annual costs were used as a measure of performance,
93% of the tests favored hierarchical production planning. The maximum
cash advantage in these cases was 144%. 1In those tests favoring MRP, the
maximum cost advantage was 3%.

When total backorders as a percent of annual demand were used as the
measure of performance, 227 of the tests favored hierarchical production
planning, 5% of the tests favored MRP, and the remaining 73% resulted in
no backorders under either methodology. In the 5% of the tests favoring
MRP, the maximum difference in backorders was 2% of annual demand. In the
227 of the tests favoring hierarchical production planning, the maximum
difference was 8%7. A summary of the differences in methods for all one
hundred tests simulated is illustrated in Figure 4.3.

For the purpose of a more complete comparison, we attempted to identify

distinguishing features of the tests which favored MRP and those which most
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THE PERCENTAGE DIFFERENCE IN TOTAL
COSTS OF THE TWO METHODOLOGIES

M F THE 100 TESTS IN THE INDI
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IN COSTS 10 20 30
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THE DIFFERENCE IN TOTAL BACKORDERS
AS A PERCENTAGE OF TOTAL ANNUAL DEMAND
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Figure 4.3: A Summary of the Results Comparing the Two-Stage Hierarchical
Model wit;\y MRP paring
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strongly favored the hierarchical approach.

Of the seven tests which favored MRP in terms of costs, none favored
MRP in terms of backorders. In two tests, the !MP approach had higher
backorders than the hierarchical approach. Of the remaining five tests,
two had exceedingly high part capacity, zero forecast error, and very high
part-setup costs. The remaining three tests which favored MRP all did so
by small amounts and all had medium forecast errors with a positive bias,
very high part-setup costs, and high part capacity. This indicates that
the MRP approach outperforms HPP in terms of costs only if 1) part capacity
is unlimited and forecast error is low, or (2) if part capacity is loose,

and finished product forecasts are always high and part setup costs are

steep.

The five tests that favored MRP in terms of backorders strongly
favored hierarchical production planning in terms of cost. The average
difference in total annual cost was 68%, Simultaneously, they all had
high seasonality, low finished product capacity, very high part setup costs,
and medium or high part capacity. This indicates that if seasonality is
high, capacity relatively tight, part setup costs very high, and back-
orders very costly, the MRP approach is preferable to HPP.

In examining the 11 tests in which the total costs associated with the
HPP method were at least 15% smaller than those associated with MRP, no
overall conclusions regarding point characteristics can be drawn. It is
worth noting that none of the 11 tests had either very high part capacity
or very strong positive biases in the forecasts.

In the two cases in which the backorders associated with MRP were
greater than the backorders associated with HPP by more than 6% of annual
demand, part capacity was low, forecast errors were unbiased, and season-

ality was high.
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In general, when parts are fabricated internally, the HPP approach
appears superior to the MRP method of planning in all but the very unusual
cas;s. This finding is further supported by comparing these two approaches
with the Wilcoxon Statistic [9]. This test indicates that the probability
that the difference in total cost of the HPP and the MRP approaches comes
from a distribution centered at zero is less than .0001 (the normalized Wilcoxon
statistics is greater than 75 standard deviations). The Statistic supports

our conclusion that the HPP methodology is superior to MRP for the cases

tested.
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5. CONCLUSIONS

The HPP system proposed in this Paper represents a novel and system-~
atic way to deal with complex pProduction planning decisions faced in a
two-stage manufacturing environment. When tested in a relatively simple
setting, it provided encouraging results which lead us to believe that
the methodology has interesting potentials that could be exploited. 1In
particular, HPP was clearly superior when compared directly with an MRP
system,

Given the emerging emphasis on MRP as a planning tool to coordinate
fabrication and assembly operations, we feel that serious attention should
be focused on hierarchical production planning systems as a topic of future

research.
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APPENDIX 1: THE DATA BASE

Given the large number of possible input parameters, we varied those
we felt were most important to test and held constant the finished product
holding cost, annual demand, the product structure, and productivitv. All
variables held constant were set to values representative of the actual
pencil manufacturer used as a base for our study.

We did not consider it necessary to vary both the finished product
and part holding costs, since it is their relative magnitudes that are of
primary importance for the purpose of our simulation.

The product/part structure we chose to use throughout the simulation
was discussed in section 4 and illustrated in Table 4.1.

Productivity was not varied in the tests simulated. The effects
generated by altering prcductivity are equivalent to those observed when
changing capacity. They influence the number of finished pruducts and
parts that the system can produce at any moment in time, We felt it un-

necessary ta vary both parameters.

The measure used for capacity was the minimum fraction of demand
that can be satisfied with regular time. The capacity was varied between
202 and 100% for finished products and 20% and 250% for parts and was
measured in the following manner.

(a) Determine the period where the highest average demand per period
occurs (based on cumulative demand - see Figure Al). Let us call

this period N.

(b) At period N, compute the average demand per period, or:

Average DemandN = (Cumulative Demand up to period N)/N

O
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Note: the point where the tar.qent
from the origin intersects the
cumulative demand curve is
the point of highest average
demand per period

CUMULATIVE
DEMAND

0 Period 13

Figure Al

(c) If capacity with no overtime is equal to Average DemandN, then
capacity is set to 100%. If capacity with the maximum allowable
overtime is equal to Average Demand, then capacity is set at 0%.

At all points between these two extremes, capacity is scaled
appropriately.
To define high setup costs, we relied upon the impact of those

costs on the length of the économic order quantities runs. We defined

a high (very high) setup cost to be one associated with a run length

greater than two (three) periods. Within the production environment in

which we conducted these tests, a three period setup cost was high.
Despite the assumption in the HPP appraoch that setup costs are
secondary, we tested points with high part and finished product setup
costs in an attempt to identify situations in which the MRP approach out-
performed our hierarchical model.
The forecast error, which was expressed as a percentage of demand,
was an increasing function of time. The following three scales for fore-

cast error magnitude were used:
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0,
0.01 + 0,02¢13,
and 0.05 + 0,02¢1°1,
where t represents time. Given the magnitude of the forecast error, the
probability of an error being positive was defined as the positive bias
of the forecast and ranged from zero to one in the tests. Exponentially
increasing forecast errors correspond to what we have observed in practice.
Each demand pattern was treated as two connected opposite direction
sine waves (as represented in Figure A2). Changes in seasonal patterns
was controlled by modifying the coefficlent of variation of the seasonal

factors ranging from 1.3 to 5.2.

SEASONAL
FACTOR
Wav
20 J e 1
1.04
Period 13
Figure A2

Part holding costs were measured as a percentage of finished product
holding costs and varied between 30% and 80%.

Overall, finished product and part capacity and setup costs, part
holding costs, forecast errors, and seasonalities assumed a variety of

realistic possible values in the tests simulated.
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